Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Retention forestry influences understory diversity and functional identity.

Identifieur interne : 000145 ( Main/Exploration ); précédent : 000144; suivant : 000146

Retention forestry influences understory diversity and functional identity.

Auteurs : Miranda T. Curzon [États-Unis] ; Christel C. Kern [États-Unis] ; Susan C. Baker [Australie] ; Brian J. Palik [États-Unis] ; Anthony W. D'Amato [États-Unis]

Source :

RBID : pubmed:32078225

Abstract

In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.

DOI: 10.1002/eap.2097
PubMed: 32078225


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Retention forestry influences understory diversity and functional identity.</title>
<author>
<name sortKey="Curzon, Miranda T" sort="Curzon, Miranda T" uniqKey="Curzon M" first="Miranda T" last="Curzon">Miranda T. Curzon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Ecology and Management, Iowa State University, 2310 Pammel Drive, Ames, Iowa, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Ecology and Management, Iowa State University, 2310 Pammel Drive, Ames, Iowa, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kern, Christel C" sort="Kern, Christel C" uniqKey="Kern C" first="Christel C" last="Kern">Christel C. Kern</name>
<affiliation wicri:level="1">
<nlm:affiliation>Northern Research Station, USDA Forest Service, 5985 Highway K, Rhinelander, Wisconsin, 54501, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Research Station, USDA Forest Service, 5985 Highway K, Rhinelander, Wisconsin, 54501</wicri:regionArea>
<wicri:noRegion>54501</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Natural Sciences and ARC Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Natural Sciences and ARC Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001</wicri:regionArea>
<wicri:noRegion>7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palik, Brian J" sort="Palik, Brian J" uniqKey="Palik B" first="Brian J" last="Palik">Brian J. Palik</name>
<affiliation wicri:level="1">
<nlm:affiliation>Northern Research Station, USDA Forest Service, 1831 Highway 169 East, Grand Rapids, Minnesota, 55744, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Research Station, USDA Forest Service, 1831 Highway 169 East, Grand Rapids, Minnesota, 55744</wicri:regionArea>
<wicri:noRegion>55744</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="D Amato, Anthony W" sort="D Amato, Anthony W" uniqKey="D Amato A" first="Anthony W" last="D'Amato">Anthony W. D'Amato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Drive, Burlington, Vermont, 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Drive, Burlington, Vermont, 05405</wicri:regionArea>
<wicri:noRegion>05405</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32078225</idno>
<idno type="pmid">32078225</idno>
<idno type="doi">10.1002/eap.2097</idno>
<idno type="wicri:Area/Main/Corpus">000445</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000445</idno>
<idno type="wicri:Area/Main/Curation">000445</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000445</idno>
<idno type="wicri:Area/Main/Exploration">000445</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Retention forestry influences understory diversity and functional identity.</title>
<author>
<name sortKey="Curzon, Miranda T" sort="Curzon, Miranda T" uniqKey="Curzon M" first="Miranda T" last="Curzon">Miranda T. Curzon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Ecology and Management, Iowa State University, 2310 Pammel Drive, Ames, Iowa, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Ecology and Management, Iowa State University, 2310 Pammel Drive, Ames, Iowa, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kern, Christel C" sort="Kern, Christel C" uniqKey="Kern C" first="Christel C" last="Kern">Christel C. Kern</name>
<affiliation wicri:level="1">
<nlm:affiliation>Northern Research Station, USDA Forest Service, 5985 Highway K, Rhinelander, Wisconsin, 54501, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Research Station, USDA Forest Service, 5985 Highway K, Rhinelander, Wisconsin, 54501</wicri:regionArea>
<wicri:noRegion>54501</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Natural Sciences and ARC Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Natural Sciences and ARC Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001</wicri:regionArea>
<wicri:noRegion>7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palik, Brian J" sort="Palik, Brian J" uniqKey="Palik B" first="Brian J" last="Palik">Brian J. Palik</name>
<affiliation wicri:level="1">
<nlm:affiliation>Northern Research Station, USDA Forest Service, 1831 Highway 169 East, Grand Rapids, Minnesota, 55744, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Research Station, USDA Forest Service, 1831 Highway 169 East, Grand Rapids, Minnesota, 55744</wicri:regionArea>
<wicri:noRegion>55744</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="D Amato, Anthony W" sort="D Amato, Anthony W" uniqKey="D Amato A" first="Anthony W" last="D'Amato">Anthony W. D'Amato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Drive, Burlington, Vermont, 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Drive, Burlington, Vermont, 05405</wicri:regionArea>
<wicri:noRegion>05405</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecological applications : a publication of the Ecological Society of America</title>
<idno type="ISSN">1051-0761</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32078225</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1051-0761</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Ecological applications : a publication of the Ecological Society of America</Title>
<ISOAbbreviation>Ecol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Retention forestry influences understory diversity and functional identity.</ArticleTitle>
<Pagination>
<MedlinePgn>e02097</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/eap.2097</ELocationID>
<Abstract>
<AbstractText>In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.</AbstractText>
<CopyrightInformation>© 2020 by the Ecological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Curzon</LastName>
<ForeName>Miranda T</ForeName>
<Initials>MT</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4102-7352</Identifier>
<AffiliationInfo>
<Affiliation>Department of Natural Resource Ecology and Management, Iowa State University, 2310 Pammel Drive, Ames, Iowa, 50011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kern</LastName>
<ForeName>Christel C</ForeName>
<Initials>CC</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4923-6180</Identifier>
<AffiliationInfo>
<Affiliation>Northern Research Station, USDA Forest Service, 5985 Highway K, Rhinelander, Wisconsin, 54501, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Susan C</ForeName>
<Initials>SC</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7593-0267</Identifier>
<AffiliationInfo>
<Affiliation>School of Natural Sciences and ARC Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Palik</LastName>
<ForeName>Brian J</ForeName>
<Initials>BJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0300-9644</Identifier>
<AffiliationInfo>
<Affiliation>Northern Research Station, USDA Forest Service, 1831 Highway 169 East, Grand Rapids, Minnesota, 55744, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>D'Amato</LastName>
<ForeName>Anthony W</ForeName>
<Initials>AW</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2570-4376</Identifier>
<AffiliationInfo>
<Affiliation>Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Drive, Burlington, Vermont, 05405, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>USDA Forest Service, Northern Research Station</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Department of Interior Northeast Climate Adaptation Science Center</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>the National Institute of Food and Agriculture McIntire-Stennis Cooperative Forestry Research Program</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecol Appl</MedlineTA>
<NlmUniqueID>9889808</NlmUniqueID>
<ISSNLinking>1051-0761</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus tremuloides </Keyword>
<Keyword MajorTopicYN="N">aggregate retention</Keyword>
<Keyword MajorTopicYN="N">edge effects</Keyword>
<Keyword MajorTopicYN="N">forest influence</Keyword>
<Keyword MajorTopicYN="N">functional diversity</Keyword>
<Keyword MajorTopicYN="N">functional identity</Keyword>
<Keyword MajorTopicYN="N">quaking aspen</Keyword>
<Keyword MajorTopicYN="N">retention forestry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32078225</ArticleId>
<ArticleId IdType="doi">10.1002/eap.2097</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F. Boucher, P. Saccone, and S. Lavorel. 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98:604-613.</Citation>
</Reference>
<Reference>
<Citation>Aubry, K. B., C. B. Halpern, and C. E. Peterson. 2009. Variable-retention harvests in the Pacific Northwest: A review of short-term findings from the DEMO study. Forest Ecology and Management 258:398-408.</Citation>
</Reference>
<Reference>
<Citation>Baker, S. C., T. A. Spies, T. J. Wardlaw, J. Balmer, J. F. Franklin, and G. J. Jordan. 2013. The harvested side of edges: effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. Forest Ecology and Management 302:107-121.</Citation>
</Reference>
<Reference>
<Citation>Baker, T. P., G. J. Jordan, E. A. Steel, N. M. Fountain-Jones, T. J. Wardlaw, and S. C. Baker. 2014. Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. Forest Ecology and Management 334:174-184.</Citation>
</Reference>
<Reference>
<Citation>Baker, S. C., et al. 2015. Short- and long-term benefits for forest biodiversity of retaining unlogged patches in harvested areas. Forest Ecology and Management 353:187-195.</Citation>
</Reference>
<Reference>
<Citation>Baker, S. C., et al. 2016a. A cross-continental comparison of plant and beetle responses to retention of forest patches during timber harvest. Ecological Applications 26:2495-2506.</Citation>
</Reference>
<Reference>
<Citation>Baker, T. P., G. J. Jordan, and S. C. Baker. 2016b. Microclimatic edge effects in a recently harvested forest: Do remnant forest patches create the same impact as large forest areas? Forest Ecology and Management 365:128-136.</Citation>
</Reference>
<Reference>
<Citation>Baraloto, C., B. Hérault, C. E. T. Paine, H. Massot, L. Blanc, D. Bonal, J.-F. Molino, E. A. Nicolini, and D. Sabatier. 2012. Contrasting taxonomic and functional responses of a tropical tree community to selective logging. Journal of Applied Ecology 49:861-870.</Citation>
</Reference>
<Reference>
<Citation>Bartels, S. F., S. E. Macdonald, D. Johnson, R. T. Caners, and J. R. Spence. 2018. Bryophyte abundance, diversity and composition after retention harvest in boreal mixedwood forest. Journal of Applied Ecology 55:947-957.</Citation>
</Reference>
<Reference>
<Citation>Bergeron, Y., B. Harvey, A. Leduc, and S. Gauthier. 1999. Forest management guidelines based on natural disturbance dynamics: Stand- and forest-level considerations. Forestry Chronicle 75:49-54.</Citation>
</Reference>
<Reference>
<Citation>Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.</Citation>
</Reference>
<Reference>
<Citation>Bradford, J., P. Weishampel, M.-L. Smith, R. Kolka, R. A. Birdsey, S. V. Ollinger, and M. G. Ryan. 2009. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment. Canadian Journal of Forest Research 39:802-813.</Citation>
</Reference>
<Reference>
<Citation>Bradshaw, F. J. 1992. Quantifying edge effect and patch size for multiple-use silviculture-a discussion paper. Forest Ecology and Management 48:249-264.</Citation>
</Reference>
<Reference>
<Citation>Burton, J. I., S. S. Perakis, S. C. McKenzie, C. E. Lawrence, and K. J. Puettmann. 2017. Intraspecific variability and reaction norms of forest understorey plant species traits. Functional Ecology 31:1881-1893.</Citation>
</Reference>
<Reference>
<Citation>Cadenasso, M. L., M. M. Traynor, and S. T. Pickett. 1997. Functional location of forest edges: gradients of multiple physical factors. Canadian Journal of Forest Research 27:774-782.</Citation>
</Reference>
<Reference>
<Citation>Chen, J., J. F. Franklin, and T. A. Spies. 1995. Growing-season microclimatic gradients from clearcut edges into old-growth douglas-fir forests. Ecological Applications 5:74-86.</Citation>
</Reference>
<Reference>
<Citation>Clough, B. J., M. T. Curzon, G. M. Domke, M. B. Russell, and C. W. Woodall. 2017. Climate-driven trends in stem wood density of tree species in the eastern United States: ecological impact and implications for national forest carbon assessments. Global Ecology and Biogeography 26:1153-1164.</Citation>
</Reference>
<Reference>
<Citation>Cornelissen, J. H. C., et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335.</Citation>
</Reference>
<Reference>
<Citation>Craig, A., and S. E. Macdonald. 2009. Threshold effects of variable retention harvesting on understory plant communities in the boreal mixedwood forest. Forest Ecology and Management 258:2619-2627.</Citation>
</Reference>
<Reference>
<Citation>Curzon, M. T., A. W. D’Amato, and B. J. Palik. 2016. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA. Applied Vegetation Science 19:667-678.</Citation>
</Reference>
<Reference>
<Citation>Curzon, M. T., S. C. Baker, C. C. Kern, B. J. Palik, and A. W. D'Amato. 2017a. Influence of mature overstory trees on adjacent 12-year regeneration and the woody understory: aggregated retention versus intact forest. Forests 8:31.</Citation>
</Reference>
<Reference>
<Citation>Curzon, M. T., A. W. D’Amato, S. Fraver, B. J. Palik, A. Bottero, J. R. Foster, and K. E. Gleason. 2017b. Harvesting influences functional identity and diversity over time in forests of the northeastern U.S.A. Forest Ecology and Management 400:93-99.</Citation>
</Reference>
<Reference>
<Citation>Dale, V. H., et al. 2001. Climate Change and forest disturbances climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 51:723-734.</Citation>
</Reference>
<Reference>
<Citation>Diaz, S., et al. 2004. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15:295-304.</Citation>
</Reference>
<Reference>
<Citation>Díaz, S., S. Lavorel, F. de Bello, F. Quétier, K. Grigulis, and T. M. Robson. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences USA 104:20684-9.</Citation>
</Reference>
<Reference>
<Citation>Díaz, S., and M. Cabido. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16:646-655.</Citation>
</Reference>
<Reference>
<Citation>Dodonov, P., K. A. Harper, and D. M. Silva-Matos. 2013. The role of edge contrast and forest structure in edge influence: vegetation and microclimate at edges in the Brazilian cerrado. Plant Ecology 214:1345-1359.</Citation>
</Reference>
<Reference>
<Citation>Dormann, C. F., et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27-46.</Citation>
</Reference>
<Reference>
<Citation>Dupuch, A., and D. Fortin. 2013. The extent of edge effects increases during post-harvesting forest succession. Biological Conservation 162:9-16.</Citation>
</Reference>
<Reference>
<Citation>Elmqvist, T., C. Folke, M. Nyström, G. Peterson, J. Bengtsson, B. Walker, and J. Norberg. 2003. Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment 1:488-494.</Citation>
</Reference>
<Reference>
<Citation>Esseen, P.-A. 1994. Tree mortality patterns after experimental fragmentation of an old-growth conifer forest. Biological Conservation 68:19-28.</Citation>
</Reference>
<Reference>
<Citation>Fahey, R. T., et al. 2018. Shifting conceptions of complexity in forest management and silviculture. Forest Ecology and Management 421:59-71.</Citation>
</Reference>
<Reference>
<Citation>Fedrowitz, K., et al. 2014. Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology 51:1669-1679.</Citation>
</Reference>
<Reference>
<Citation>Ferris, R., and J. Humphrey. 1999. A review of potential biodiversity indicators for application in British forests. Forestry 72:313-328.</Citation>
</Reference>
<Reference>
<Citation>Franklin, J. F. 1988. Structural and functional diversity in temperate forests. Pages 166-175 inE. O. Wilson, editor. Biodiversity. National Academy Press, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Franklin, J. F., D. F. Berg, D. Thornburg, and J. C. Tappeiner. 1997. Alternative silvicultural approaches to timber harvesting: Variable retention harvest systems. Pages 111-140 inK. A. Kohm and J. F. Franklin editors. Creating a forestry for the 21st century: the science of ecosystem management. Island Press, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Franklin, J. F., R. J. Mitchell, and B. J. Palik. 2007. Natural disturbance and stand development principles for ecological forestry. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, USA. 44. https://doi.org/10.2737/NRS-GTR-19</Citation>
</Reference>
<Reference>
<Citation>Franklin, C. M. A., S. E. Macdonald, and S. E. Nielsen. 2018. Combining aggregated and dispersed tree retention harvesting for conservation of vascular plant communities. Ecological Applications 287:1830-1840.</Citation>
</Reference>
<Reference>
<Citation>Fraver, S. 1994. Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River basin, North Carolina. Conservation Biology 8:822-832.</Citation>
</Reference>
<Reference>
<Citation>Funk, J. L., J. E. Larson, G. M. Ames, B. J. Butterfield, J. Cavender-Bares, J. Firn, D. C. Laughlin, A. E. Sutton-Grier, L. Williams, and J. Wright. 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92:1156-1173.</Citation>
</Reference>
<Reference>
<Citation>Garnier, E., et al. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630-2637.</Citation>
</Reference>
<Reference>
<Citation>Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86:902-910.</Citation>
</Reference>
<Reference>
<Citation>Gustafsson, L., J. Kouki, and A. Sverdrup-Thygeson. 2010. Tree retention as a conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scandinavian Journal of Forest Research 25:295-308.</Citation>
</Reference>
<Reference>
<Citation>Gustafsson, L., et al. 2012. Retention forestry to maintain multifunctional forests: a world perspective. BioScience 62:633-645.</Citation>
</Reference>
<Reference>
<Citation>Haddad, N. M., M. Holyoak, T. M. Mata, K. F. Davies, B. A. Melbourne, and K. Preston. 2008. Species' traits predict the effects of disturbance and productivity on diversity. Ecology Letters 11:348-356.</Citation>
</Reference>
<Reference>
<Citation>Halpern, C. B., J. Halaj, S. A. Evans, and M. Dovčiak. 2012. Level and pattern of overstory retention interact to shape long-term responses of understories to timber harvest. Ecological Applications 22:2049-2064.</Citation>
</Reference>
<Reference>
<Citation>Harmon, M. E., W. K. Ferrell, and J. F. Franklin. 1990. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247:699.</Citation>
</Reference>
<Reference>
<Citation>Harper, K. A., and S. E. Macdonald. 2011. Quantifying distance of edge influence: a comparison of methods and a new randomization method. Ecosphere 2:art94.</Citation>
</Reference>
<Reference>
<Citation>Harper, K. A., S. E. Macdonald, P. J. Burton, J. Chen, K. D. Brosofske, S. C. Saunders, E. S. Euskirchen, D. Roberts, M. S. Jaiteh, and P.-A. Esseen. 2005. Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19:768-782.</Citation>
</Reference>
<Reference>
<Citation>Harper, K. A., et al. 2015. Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia. Journal of Ecology 103:550-562.</Citation>
</Reference>
<Reference>
<Citation>Heithecker, T. D., and C. B. Halpern. 2007. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. Forest Ecology and Management 248:163-173.</Citation>
</Reference>
<Reference>
<Citation>Hooper, D. U., et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:3-35.</Citation>
</Reference>
<Reference>
<Citation>Hunter, M. L., and J. P. Gibbs (Eds.). 2006. What is biodiversity? Pages 22-33 in Fundamentals of conservation biology. Third edition. Blackwell Publications, Malden, Massachusetts, USA.</Citation>
</Reference>
<Reference>
<Citation>Isbell, F., et al. 2011. High plant diversity is needed to maintain ecosystem services. Nature 477:199-202.</Citation>
</Reference>
<Reference>
<Citation>Jönsson, M. T., S. Fraver, B. G. Jonsson, M. Dynesius, M. Rydgård, and P.-A. Esseen. 2007. Eighteen years of tree mortality and structural change in an experimentally fragmented Norway spruce forest. Forest Ecology and Management 242:306-313.</Citation>
</Reference>
<Reference>
<Citation>Keenan, R. J., and J. P. Kimmins. 1993. The ecological effects of clear-cutting. Environmental Reviews 1:121-144.</Citation>
</Reference>
<Reference>
<Citation>Kern, C. C., R. A. Montgomery, P. B. Reich, and T. F. Strong. 2014. Harvest-created canopy gaps increase species and functional trait diversity of the forest ground-layer community. Forest Science 60:335-344.</Citation>
</Reference>
<Reference>
<Citation>Knapp, B. O., M. G. Olson, D. R. Larsen, J. M. Kabrick, and R. G. Jensen. 2014. Missouri Ozark forest ecosystem project: a long-term, landscape-scale, collaborative forest management research project. Journal of Forestry 112:513-524.</Citation>
</Reference>
<Reference>
<Citation>Kuuluvainen, T., O. Tahvonen, and T. Aakala. 2012. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. Ambio 41:720-37.</Citation>
</Reference>
<Reference>
<Citation>Lachance, É., D. Pothier, and M. Bouchard. 2013. Forest structure and understory plant communities inside and outside tree retention groups in boreal forests. Écoscience 20:252-263.</Citation>
</Reference>
<Reference>
<Citation>Laliberté, E., and P. Legendre. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299-305.</Citation>
</Reference>
<Reference>
<Citation>Laliberté, E., and B. Shipley. 2011. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://rdrr.io/cran/FD/</Citation>
</Reference>
<Reference>
<Citation>Laliberté, E., D. A. Norton, and D. Scott. 2013. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. Journal of Vegetation Science 24:834-842.</Citation>
</Reference>
<Reference>
<Citation>Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545-556.</Citation>
</Reference>
<Reference>
<Citation>Lavorel, S., S. Díaz, J. H. C. Cornelissen, E. Garnier, S. P. Harrison, S. McIntyre, J. G. Pausas, N. Pérez-Harguindeguy, C. Roumet, and C. Urcelay. 2007. Plant functional types: are we getting any closer to the holy grail? Pages 149-164 in J. G. Canadell, D. E. Pataki, L. F. Pitelka (Eds.), Terrestrial ecosystems in a changing world. Springer, Berlin Heidelberg, Berlin, Heidelberg, Germany.</Citation>
</Reference>
<Reference>
<Citation>Lavorel, S., K. Grigulis, S. McIntyre, N. S. G. Williams, D. Garden, J. Dorrough, S. Berman, F. Quétier, A. Thébault, and A. Bonis. 2008. Assessing functional diversity in the field-methodology matters! Functional Ecology 22:071124124908001.</Citation>
</Reference>
<Reference>
<Citation>Lindenmayer, D. B., and J. F. Franklin. 2002. Conserving forest biodiversity: a comprehensive multiscaled approach. InD. B. Lindenmayer, and Franklin, J. F., editors. Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Lindenmayer, D. B., et al. 2012. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conservation Letters 5:421-431.</Citation>
</Reference>
<Reference>
<Citation>Luoma, D. L., C. A. Stockdale, R. Molina, and J. L. Eberhart. 2006. The spatial influence of Pseudotsuga menziesii retention trees on ectomycorrhiza diversity. Canadian Journal of Forest Research 36:2561-2573.</Citation>
</Reference>
<Reference>
<Citation>Lutz, D. A., H. H. Shugart, and M. A. White. 2013. Sensitivity of Russian forest timber harvest and carbon storage to temperature increase. Forestry 86:283-293.</Citation>
</Reference>
<Reference>
<Citation>Maeshiro, R., B. Kusumoto, S. Fujii, T. Shiono, and Y. Kubota. 2013. Using tree functional diversity to evaluate management impacts in a subtropical forest. Ecosphere 4:art70.</Citation>
</Reference>
<Reference>
<Citation>Mason, N. W. H., D. Mouillot, W. G. Lee, and J. B. Wilson. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112-118.</Citation>
</Reference>
<Reference>
<Citation>Mina, M., H. Bugmann, T. Cordonnier, F. Irauschek, M. Klopcic, M. Pardos, and M. Cailleret. 2017. Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology 54:389-401.</Citation>
</Reference>
<Reference>
<Citation>Minnesota Forest Resources Council (MFRC). 2013. Sustaining Minnesota Forest Resources: Voluntary Site-Level Forest Management Guidelines for Landowners, Loggers and Resource Managers. Minnesota Forest Resources Council, St. Paul, Minnesota.</Citation>
</Reference>
<Reference>
<Citation>Mitchell, S. J., and W. J. Beese. 2002. The retention system:reconciling variable retention with the principles of silvicultural systems. Forestry Chronicle 78:397-403.</Citation>
</Reference>
<Reference>
<Citation>Moen, J., and B. G. Jonsson. 2003. Edge effects on liverworts and lichens in forest patches in a mosaic of boreal forest and wetland. Conservation Biology 17:380-388.</Citation>
</Reference>
<Reference>
<Citation>Mori, A. S., and R. Kitagawa. 2014. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: a global meta-analysis. Biological Conservation 175:65-73.</Citation>
</Reference>
<Reference>
<Citation>Morrissey, R. C., M. R. Saunders, and M. A. Jenkins. 2015. Successional and structural responses to overstorey disturbance in managed and unmanaged forests. Forestry: An International Journal of Forest Research 88:376-389.</Citation>
</Reference>
<Reference>
<Citation>Mouchet, M. A., S. Villéger, N. W. H. Mason, and D. Mouillot. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867-876.</Citation>
</Reference>
<Reference>
<Citation>Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason, and D. R. Bellwood. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution 28:167-177.</Citation>
</Reference>
<Reference>
<Citation>Nelson, C. R., and C. B. Halpern. 2005. Edge-related responses of understory plants to aggragated retention harvest in the Pacific Northwest. Ecological Applications 15:196-209.</Citation>
</Reference>
<Reference>
<Citation>Palik, B. J., and D. Kastendick. 2010. Response of seasonal pond plant communities to upland forest harvest in northern Minnesota forests, USA. Forest Ecology and Management 260:628-637.</Citation>
</Reference>
<Reference>
<Citation>Palik, B. J., and P. G. Murphy. 1990. Disturbance versus edge effects in sugar-maple/beech forest fragments. Forest Ecology and Management 32:187-202.</Citation>
</Reference>
<Reference>
<Citation>Perala, D. A., and D. Alban. 1993. Allometric biomass estimators for aspen-dominated ecosystems in the upper Great Lakes. U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, Saint Paul, Minnesota, USA. https://doi.org/10.2737/NC-RP-314</Citation>
</Reference>
<Reference>
<Citation>Pommerening, A., and S. T. Murphy. 2004. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77:27-44.</Citation>
</Reference>
<Reference>
<Citation>Puettmann, K. J., K. D. Coates, and C. Messier. 2009. A critique of silviculture. Island Press, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Raymond, P., and S. Bédard. 2017. The irregular shelterwood system as an alternative to clearcutting to achieve compositional and structural objectives in temperate mixedwood stands. Forest Ecology and Management 398:91-100.</Citation>
</Reference>
<Reference>
<Citation>Raymond, P., S. Bédard, V. Roy, C. Larouche, and S. Tremblay. 2009. The irregular shelterwood system: review, classification, and potential application to forests affected by partial disturbances. Journal of Forestry 107:405-413.</Citation>
</Reference>
<Reference>
<Citation>R Core Team 2013. R: A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing. https://www.R-project.org/</Citation>
</Reference>
<Reference>
<Citation>Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences USA 94:13730-4.</Citation>
</Reference>
<Reference>
<Citation>Reich, P. B., L. E. Frelich, R. A. Voldseth, P. Bakken, and E. C. Adair. 2012. Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. Journal of Ecology 100:539-545.</Citation>
</Reference>
<Reference>
<Citation>Rosenvald, R., and A. Lõhmus. 2008. For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. Forest Ecology and Management 255:1-15.</Citation>
</Reference>
<Reference>
<Citation>Siira-Pietikäinen, A., and J. Haimi. 2009. Changes in soil fauna 10 years after forest harvestings: comparison between clear felling and green-tree retention methods. Forest Ecology and Management 258:332-338.</Citation>
</Reference>
<Reference>
<Citation>Solarik, K. A., W. J. A. Volney, V. J. Lieffers, J. R. Spence, and A. Hamann. 2012. Factors affecting white spruce and aspen survival after partial harvest. Journal of Applied Ecology 49:145-154.</Citation>
</Reference>
<Reference>
<Citation>Suding, K. N., and L. J. Goldstein. 2008. Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytologist 180:559-562.</Citation>
</Reference>
<Reference>
<Citation>van der Plas, F., R. van Klink, P. Manning, H. Olff, and M. Fischer. 2017. Sensitivity of functional diversity metrics to sampling intensity. Methods in Ecology and Evolution 8:1072-1080.</Citation>
</Reference>
<Reference>
<Citation>Venn, S. E., K. Green, C. M. Pickering, and J. W. Morgan. 2011. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecology 212:1491-1499.</Citation>
</Reference>
<Reference>
<Citation>Villéger, S., N. W. H. Mason, and D. Mouillot. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290-2301.</Citation>
</Reference>
<Reference>
<Citation>Villéger, S., J. R. Miranda, D. F. Hernández, and D. Mouillot. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20:1512-1522.</Citation>
</Reference>
<Reference>
<Citation>Weaver, J. C. 1995. Indicator species and scale of observation. Conservation Biology 9:939-942.</Citation>
</Reference>
<Reference>
<Citation>Westoby, M., and I. J. Wright. 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution 21:261-268.</Citation>
</Reference>
<Reference>
<Citation>Xing, D., S. E. Nielsen, S. E. Macdonald, J. R. Spence, and F. He. 2018. Survival and growth of residual trees in a variable retention harvest experiment in a boreal mixedwood forest. Forest Ecology and Management 411:187-194.</Citation>
</Reference>
<Reference>
<Citation>Zenner, E. K., J. M. Kabrick, R. G. Jensen, J. E. Peck, and J. K. Grabner. 2006. Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. Forest Ecology and Management 222:326-334.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Curzon, Miranda T" sort="Curzon, Miranda T" uniqKey="Curzon M" first="Miranda T" last="Curzon">Miranda T. Curzon</name>
</region>
<name sortKey="D Amato, Anthony W" sort="D Amato, Anthony W" uniqKey="D Amato A" first="Anthony W" last="D'Amato">Anthony W. D'Amato</name>
<name sortKey="Kern, Christel C" sort="Kern, Christel C" uniqKey="Kern C" first="Christel C" last="Kern">Christel C. Kern</name>
<name sortKey="Palik, Brian J" sort="Palik, Brian J" uniqKey="Palik B" first="Brian J" last="Palik">Brian J. Palik</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000145 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000145 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32078225
   |texte=   Retention forestry influences understory diversity and functional identity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32078225" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020